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In connection with studies on the synthesis of various solid substances in a com- 
bustion wave (self-propagating high-temperature synthesis) [1-3] a model is pro- 
posed for the unsteady combustion of gasless compositions which describes the re- 
laxation mechanism of the propagation of an exothermic chemical reaction front in 
a condensed system, forming refractory products. The period of the oscillations 
in the combustion rate, the movement of the reaction front during one oscillation, 
and other characteristics of the process are determined. A comparison is made 
with the results of numerical calculations. 

i. Relaxation Mechanism of the Propagation of an Exothermic Chemical Reaction Front 
in a Condensed Medium. Numerical calculations [i] have showed that in a wide region of 
the determining parameters a steady mode of combustion, responsible for the propagation of 
a reaction front with a constant velocity, is unstable, and the reaction front propagates 
in a self-oscillatory manner. Analytical studies [4, 5] of the stability of the stationary 
mode of combustion of gasless compositions by the method of small perturbations also showed 
the existence of an unstable region. The phenomenon of a self-oscillating mode of propaga- 
tion of a reaction front was detected experimentally in [2]. 

A study of the structure of the pulsations in the combustion rate, carried out in [I] 
through the numerical solution of a nonstationary system of equations, made it possible to 
establish that the amplitude of the pulsations in the combustion rate increases in proportion 
to the departure from the curve of neutral stability into the depths of the unstable region, 
while the oscillations themselves have more and more of a relaxation nature; prolonged de- 
pressions in the combustion rate alternate with its considerable outbursts. In this case 
the space--time distributions of the temperature and concentration indicate that the prolonged 
heating of a certain part of the initial material is replaced by its rapid ignition and burn- 
up. Numerical calculations [i, 2] show that such a combustion mode for gasless compositions 
is established even at a small distance from the boundary of stability and is typical. The 
time dependence of the coordinates of the reaction front obtained by numerical calculations 
and presented in Fig. i is taken from [2] (curves I and 2 correspond to different distances 

from the boundary of stability). 

A limiting model for the propagation of a pulsating exothermic reaction front in a con- 
densed material is proposed below (a brief description of it was given earlier in [6]). In 
it we assume that following the burnup of the next portion of the initial material the heat- 
ing of a new portion of it takes place over some time interval until the ignition condition 
is reached. After this the heated material rapidly burns up, as a result of which the reac- 
tion front moves a certain distance. The problem consists in the determination of the values 
of the movement of the reaction front and the period of the oscillations. 

2. Derivation of the Integral Equation Determining the Temperature in the Chemical 
Reaction Zone. We will assume that during the entire combustion process the width of the 
Chemical reaction zone because of the sharp dependence of the chemical reaction rate on 
the temperature is considerably less than the thickness of the heating zone (this assumption 
is confirmed by numerical calculations [i, 2]). 
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Then the chemical reaction zone in which the complete conversion of the material takes 
place can be considered as a surface separating the initial material and the combustion 
products. Let us introduce a coordinate system connected with this surface (the initial 
material is in the region x < 0). 

The unsteady process of heat propagation in the condensed material to the left and to 
the right from the chemical reaction zone is described by the following equations and bound- 
ary and initial conditions: 

in region I (x < 0) 
001 0~0i - 001 "h~ = ~ -- v (v)---~- ( 2 .  i) 

=T0,01 =0~~ ~ = - - o o ,  0~ =0 ,  ~ = 0 , 0 i  =0(~)  

in region II (x > 0) 

a02 ~ a~O~ v (~) 002 

=~o, o~=o~ ~ ~=0 ,  0~=~(T), 
T' - -  To' _~_ 

O =  T '  ~ ,  , ~ = x  , " c = t  uJ  
t t  a 

O~ = I ( 2 . 2 )  

where x is the spatial coordinate, t is the time, T' is the temperature~ T~ is the initial 
temperature of the material, T~ = T~ + Q/c is the adiabatic combustion temperature (Q is 
the calorific effect, and c is the heat capacity), z is the thermal diffusivity, ua= = 

Z(RT~2/E(T~ -- T~))ko exp(--E/RT~) is the propagation rate of the exothermic reaction front 
corresponding to a steady solution (E is the activation energy, R is the gas constant, and 
ko is the preexponent), and u(t) is the rate of movement of the reaction front in the labor- 
atory coordinate system. The functions 0F and 8~ describe the initial temperature distribu- 
tions in each of the regions. The temperature #(T) = (T'(t, 0) -- T~)/(T~ -- T~) in the reac- 
tion zone is an unknown function and is subject to determination. 

By analogy with [7], where an integral equation for the unsteady combustion rate of a 
powder was derived, we apply a Fourier transformation to (2.1) and (2.2), assuming for prob- 
lem (2.1) that 0 = 0 when $ > 0, and for problem (2.2) that 8 = 0 when ~ < 0. We introduce 

F i  (k, ~) = ! 0i (~, ~) e-4~d~ ( 2 . 3 )  
- -oQ 

+ o o  

F~ (k, ~) = I [0~ (% ~) - -  11 e-~d~  ( 2 . 4 )  
0 

From (2.1) we have 

0 

- o o  

From (2.2) it follows that 

(2.5) 
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dF~ I .d'~ q -  ( ikv  -Jr- k')F~ = - -  ~ 2  - } -  ( ik  - -  v) ( i  - -  O) 

' (@~ = Oe,.~t O~ I ~.--~.) ( 2 . 6 )  

-----i ~ t "~ = ~o, F2 (k, %)  [03 (~) - -  ] e-ir~d~ 
0 

The solutions of the differential equations (2.5) and (2.6) with the indicated initial 
c o n d i t i o n s  h a v e  t h e  r e s p e c t i v e  f o r m s  

Fi  (k, "~)" = l {ePi ('d) q- [ik - -  v (~')1 0 (z ')} exp  [ - -  k S ('~ - -  x') - -  ik l]  X d'd + F i  (k, ~o) e x p  [ - -  k ~ (~ - -  To) - -  ikJ] 

_ - , . /7 - -  = i  ( 2 . 8 )  ~kll dr t :  ~ (k, ~o) e x p  [ - -  k s (~ - -  Xo) ikJ],  J v (~f') d'~" 

Here ~,(m) is the coordinate of the reaction front in the laboratory coordinate system 
at the time m. Applying the inverse transformation 

01 (~, T) = I o~ F i  (k, T)e i~dk  

to (2.7) and (2.8) and substituting the value ~ = 0 into the equations obtained, we obtain, 

respectively, 

' 0 

d'~' . 1 " 

'(i e - l = -r [ -  + (o i )  
To 

12 
4 (~--~:') ] X 

• + l 
4 ('~ - -  "~o).1 J 

(e - -  t) z ] 
2 ( ~ - - ~ ' )  X 

(2.9) 

12 i § 

o 4 (~ - -  ~o) 

Since we seek a periodic solution not dying down with time and describing a mode of 
established oscillations, we should go to the limit as To § in Eqs. (2.9) and (2.10). 
Then the terms on the right sides of (2.9) and (2.10) which describe the effect of the ini- 
tial conditions disappear. Combining the resulting equations, we obtain 

2 ~  - -  t = - - ~  q)i (~:') - -  q)2 (~') - -  v (T') -+ 2 (v - -  ~') e x p  4 (v - -  ~ ' )  y ~ _ v, 
(2 .ii) 

Let us now use the connection of the heat fluxes entering the reaction zone. Adding 
the heat-conduction equation, written with allowance for heat release and integrated over 6, 
and the equation of consumption of the reacting material and reducing the width of the chemi- 
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cal reaction zone toward zero, we obtain 

(2.12) 

Here a is the concentration of the reagent, and ~ = 6x/(~/u a) is the dimensionless 
half-width Of the chemical reaction zone. 

For the combustion mode examined in Sec. 3, connected with sharp changes in the temp- 
erature of the chemical reaction zone, the integral on the right side of (2.12) has a maxi- 
mum value during the "jump" of the reaction front, equal in order of magnitude to the ratio 
of the two small parameters 6 x and A t = ~/Ua ~ (2A is the burnup time for the next portion 
ot the initial material; see Fig. i), which is small in comparison with the other terms of 
the equation in virtue of the estimate ~x/At << h/A t = u (u is the mean rate of propagation 
of the reaction front in the transition section). Substituting the connection of the heat 
fluxes (2.12) with allowance for this remark into (2.11) and using (2.7), we obtain 

.= 

2 ~  - -  l = ~ - ~  (-~ _ ~-,)/~ ~ 4 ( ~ - -  "~9 (2.13) 

The periodicity of the function ~ (T) determined from this equation follows from the per- 
iodicity of the function v(T). Equation (2.13) also shows that the dimensionless temperature 
of the chemical reacton zone is determined only by the law of motion of the reaction front. 
In particular, when the reaction front propagates with a constant velocity, i.e., ~,(T) = T, 
it follows from (2.13) that ~ = i. Below we will examine a mode of relaxation oscillations 
accompanied by prolonged heating of the inert material, although the integral equation (2.13) 
is derived only on the assumption of narrowness of the chemical reaction zone and therefore 
is valid for an arbitrary law of motion of the reaction front describing a mode of combustion 
over long times. 

3. Determination of Ignition Temperature in the Case of Propagation of a Chemical Re- 
action Front "by Jumps." With the help of Eq. (2.13) we can determine the temperature of 
the chemical reaction zone at the moment of ignition for a combustion mode consisting in the 
alternation of the prolonged heating of some part of the initial material and its relatively 
rapid burnup. Let us assign the time dependence ~,(r) of the coordinate of the reaction 
front responsible for the indicated mode and illustrated graphically in Fig. i in the form 

(lh(A, "c) = - -  a h l ? ( A  , ,~) + ~hl~ ~ (A, ~) 

A ) (3.t)  
( "~) ~r~ ~+~ t, ~ T  A i (~, ~) =I ~ , = 

l j (0)=t , / )  = 0  for - ~ [ ( i - - l ) T +  A, iT- -  Al(] = t , 2 )  
h' (o) = 1~' (o) 

The transition function ~i(A, r) introduced here in the most general form describes the 
law of motion of the reaction front during the burnup of the heated portion of the initial 
material, which is accompanied by intense heat release. The functions fl and fz are mono- 
tonic and continuous in their physical sense. 

Let us substitute the expression for ~,(~) into the integral equation (2.13) and deter- 
mine the temperature in the chemical reaction zone during the time interval (n -- I)T + A 
T S nT -- A. Since the function ~,(T') is periodic, it is convenient to replace the integral 
on the right side of (2.13) With a sum of integrals each of which is taken over the period. 
Calculating each integral with the accuracy of small values of order A/T, with which all 
further calculations are conducted, we obtain 
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~7,--]: 

2@--i= ~ {erf~ h(n--O ] h(n--O 
~ : _ ~  r165 
" ( n - - 1 ) T  t._.._~__ ! ) h i  I ~ 'a- l ' "  { h~ - , ~ , ~  v-,, ~')1 [i_~;-~(A,~')]2 l 

-4- 2 1/'~" On- T--~ (~: -- "r exp 4 (v'--.r ] 
(n--1)T-]- A 

l ! ah/,~' (h, "~ ') {a~h2[l,n(A,'~')] ~ } 
• d~' q-- 2 ]/'----~ (n-)T (%" -- v')~'~ exp - -  4(~--~') dT' 

x 

( 3 . 2 )  

For the calculations conducted in Sec. 4 it is convenient to reckon the time from the 
moment the chemical reaction front stops, i.e., to set T = T -- (n -- I)T -- A. Then Eq. (3.2) 
takes the form 

n - - I  " ( n - - 1 ) T  

2 , - - i =  _~  {erf[ h ( , t - -0  ] - - e r f [  h(n_--O . ] } +  l !T x 
t----~ 2 ]/'Tr + (n__ i_  1) T 2 V•-{- (n -- 0 T 2 ]/- ' -~ (n A 

• . . . .  exp {. + {(n--I) T-{-A-{-'C~T): 4 ((n -- i) T -}- A -}- ~' -- z")J 

(n T+a a~h2 [fln (h--' ~)~ .~dT' ( 3 . 3 )  . ~hi, n (A, ~') exp - -  4 
H- 2F -~  (--~)~ ( ( n - 1 ) ~ ' §  ~,~ ( ( n - i ) T §  

Note that the first term on the right side of (3.2), representing a converging series 
containing positive terms, arises as a result of the integration over the segments [(i -- I)T+ 
A, iT -- A]. One can show that the integrals over the transition sections [(i -- I)T, (i--l) T + 
A] and [iT -- A, iT] (i = ~, .... n -- I) make a contribution on the order of A/T to the value 
of @, except for the integrals over the last transition section [(n -- I)T -- A, (n -- I)T + A], 
which are also written on the right side of (3.2). These integrals make a finite contribu- 
tion to @, depending on the behavior of the smoothing functions f~ and f2, only at the very 
start of the period of cooling of the chemical reaction zone when T -- (n -- I)T ~ A. For 
times T -- (n -- I)T >> A the value of the integrals on the right side of (3.2) is on the order 
of A/T, and the time dependence of the temperature in the reaction zone has the following 
form with the accuracy of small terms of order A/T: 

2@-- t = 
n--1 

Thus, the function ~ falls sharply at the start of the period (in times on the order 
of A) from some value exceeding the adiabatic combustion temperature (the amount of the ex- 
cess depends on the law of motion of the reaction front in the transition section) to a 
lower value and then varies smoothly in accordance with (3.4). Such behavior of the function 
~(T) is explained by the fact that after the burnup of the next portion of the initial mater- 
ial the temperature in the reaction zone isstrongly increased, while the heat fluxes into 
the zone of reaction products and into the zone of initial material become very large, which 

results in a sharp decrease in the temperature. 

Substituting the value T = nT -- A into (3.4), we obtain the temperature @, in the reac- 

tion zone at which ignition occurs, 

] [ 1} 2@,- -  ! =~.=_~ err ]/-~--~'] - - e r r  2 V T  Y ; : ~ + i  

The dependence of the ignition temperature on the parameter h/~-is presented in Fig. 
2. This curve is universal, since O, does not depend on the other parameters of the problem. 

4. Additional Relationships Determining the Size of the Jumps and the Period of the 
Pulsations. Following the ignition and rapid burnup of thenext portion of the initial 
material the reaction front stops, and the temperature in the zone of chemical conversion 
increases considerably. With this the outflow of heat into the region of initial material 
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increases sharply, which leads to its warming due to the heat supplied from the zone of re- 
action products. As soon as the heated layer in the unreacted material becomes large enough 
ignition occurs. 

In order to assign the condition of ignition let us use the concepts of the theory of 
the ignition of a combustible material by an incandescent surface developed by ZelVdovich 
[8, 9]. At the start of the period of cooling of the chemical reaction zone, when the temp- 
erature gradient at ~ = -- 0 is very steep, one can neglect the heat being released in the 
reaction zone in comparison with the heat being drawn off into the interior of the initial 
material, and calculate its heating as the heating of an inert material with an assigned 
temperature at the boundary which varies with time in accordance with Eq. (3.3). The heat 
flow into the region ~ < 0 decreases with time, while the thickness of the reacting layer 
increases, sothat the heat being released in the reaction zone becomes comparable with the 
heat being drawn off into the initial material. Following [9], let us assign the condition 
of ignition (of reaching the ignition temperature) as the equality of the heat flux T I from 
the reaction zone into the region ~ < 0 to the critical value ~,. The flux ~, corresponds 
to the smallest heat flux for which a stationary temperature distribution still exists in 
the reacting layer of the material. Thus, the condition of ignition has the form 

~,  = l ~ ,  = l ] / -2  exp  27 (O, + 8) s = ---Q--, T = ( 4 . 1 )  

In (4.1) we introduce an additional correction coefficient l, which has a value on the 
order of unity and can be chosen from a comparison of the results of the theory with experi- 
mental data or with the results of computer calculations for purposes of a more exact descrip- 
tion of the effect when it deviates from the ideal scheme considered in the article. 

For the determination of the heat flux into the interior of the initial material, ne- 
glecting the heat release in the chemical reaction zone, one must solve the heat-conduction 
problem: 

0 0 / 0 ~  = 0 2 0 } 0 ~  z 
(4.2) 

= o ,  o =  Oo(~), ~ = o ,  o = ~  (~), ~ = - ~ ,  o = o  

Here Oo(~) is the temperature distribution in the initial material at the moment the 
reaction front stops. The solution of (4.2) has the form 

4-00 

(G--Y) '  . ) ] d g  ( 4 . 3 )  
4~ 

Calculating from this the heat flux from the reaction zone at the moment of ignition, 
we obtain 

so (0, T) t ~ (o) = -- lira 
+o0 

Io --Fi- dr i Y~ dg} (4.4) 

As the numerical calculations of [i, 2] show, the initial distribution 0o(~) is such 
that the thickness of the heated layer at the initial time is small compared with the thick- 
ness of the layer heated by the time of ignition. This allows one to neglect the last term 
on the right side of (4.4), which describes the eff_ect of the initial temperature distribu- 
tion. Let us now substitute the expression for ~(T) from (3.3) into (4.4) and calculate the 
heat flux ~:i with the accuracy of small values of order A/T, keeping in mind that the con- 
tribution to ~i from the integrals on the right side of (3.3), describing the effect of the 
transition section, is negligiblysmall because of their rapid dying out (in times on the 
order of A). As a result we obtain 
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i 
T~ = 2 ~ f ~  [i + g (z)] (z = h / 2 ~fP) 

( n - )  err 
- -  n--i-~- t 

z hlCt 

(d )} F i g .  3 - -  i f  ~ e x p ( - - z  2 ( n - i ) ) e r f  z n - - ~ - - t  

(4.5) 

Now substituting ~i from (4.5) into (4.1), we obtain the ignition condition in the form 

[ ( ) ]  i ' h = l~f2  exp 2T(8+~,)  2V~ i+g ~ (4.6) 

We note that the ignition condition ~x = T, is used in the theory of the ignition of a 
material by an incandescent surface at which a constant temperature is maintained. In the 
problem being considered here the ignition function@(r), describing the law of the time 
variation of the temperature at the surface of the igniting material, varies sharply from 
some value at T = 0 which exceeds the adiabatic combustion temperature to a considerably 
smaller value after a time on the order of A, and then varies more slowly (close to a con- 
stant) in accordance with the behavior of the series on the right side of (3.3) which depends 
on the combination h/~. Because of this circumstance one can use the condition (4.1) with 
good accuracy. 

The value h by which the reaction front is shifted during each of it@ movements can be 
approximately determined from the temperature gradient near the reaction zone which is known 
at the moment of ignition, i.e., 

=m@* = m  ~, ~ + 1  1 - - 0 .  (4.7) 
r  . ~ ~ exp 2T(s+~, )  

Here m is a correction coefficient on the order of unity. We note that correction coef- 
ficients of the type introduced in Eqs. (4.1) and (4.7) are usually used in an approximate 
theory of ignition (see [9, i0], for example) for better quantitative agreement of the data 
of physical or numerical experiments with the theoretical dependences, which reproduce well 
all the qualitative relationships. 

5. Calculation Procedure. Comparison of Results with the Data from a Numerical Solu- 
tion of the Problem on a Computer. For the determination of h and T one must solve Eqs. 
(3.5), (4.6), and (4.7) relative �9 to these values. It is convenient to proceed as follows. 
Multiplying together the right and left sides of Eqs. (4.6) and (4.7) we obtain (all further 
calculation is conducted for I = m = i) 

h [t q- g ( h / 2 ~ f T ) ]  ---= 2 V ~ O ,  (hi V-T) 
V7 

(5.1) 

The left (curve I) and right (curve 2) sides of Eq. (5.1) are ~resented in Fig. 3. The 
point of intersection of the curves determines the sought value h/~T = 1.89 (if the coeffi- 
cients ~ and m are different from unity the value of the ratio h//Tnaturally changes). Now 
one can determine from Fig. 2 the ignition temperature @~ = 0.625. Note that the indicated 
values of h//~and ~, are universal for all modes (when ~ m = i) corresponding to the 
propagation of a chemical reaction front '!by jumps." Thus, the entire calculation is re- 
duced to the determination of h from Eq. (4.7) for the given values of the parameters ~ and 
y and with O,ffi0.625 and the subsequent calculation of the pulsation period 

T = (h / 1.89) ~ ( 5 . 2 )  

and the mean velocity ~ = h/T of propagation of the chemical reaction front. 

We note that the ignition temperature ~, = 0.625 does not differ greatly from the value 
@, = 0.5 which is obtained in the solution of the self-similar problem on the decay of a 
thermal step (81(~, 0) = 0, 92(~, 0) = i). However, the difference which exists, produced 
by the effect of all the preceding cycles of oscillations, is very important in the determin- 
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ation of the critical conditions of ignition. If calculations are conducted according to 
(4.7) and (5.2) using @, = 0.5, the results will differ by several orders of magnitude from 
the values obtained by computer calculations~ 

Let us make a comparison with the numerical calculations performed in [2], the results 
of which are presented in Fig. i in the dimensionless variables ~ = xu~/ • and T' = t~a/ • 
adopted in that work (u~ is the steady propagation velocity of the reaction front at the 
boundary of stability, which corresponds to y = 0.1619). 

For mode i (curve i), which corresponds to y = 0.0952 and c = 0.05, we find h' = h(u~/ 
ua) = 180, T' = T(u~/u~) ~ = 4600, and ~' = ~(ualu~) = 0.039. On the other hand, it follows 
from Eqs. (4.7) and (5.2) that h' = 145, T' = 5810, and ~' = 0.025. For mode 2 (curve 2), 
corresponding to y = 0.1048 and e = 0.05, the numerical calculation gives h' = 125, T' = 
1450, and m,r = 0.086, while calculations from Eqs. (4.7) and (5.2) give h' = 64, T' = 1150, 
and m' = 0.056. 

Thus, our calculations show that with a decrease in the parameter y (an increase in the 
activation energy) the period of the pulsations in the combustion rate and the amount of 
movement of the reaction front during one oscillation increase, while the mean velocity de- 
creases. 

The above comparison with the results of numerical calculations indicates that the model 
of the pulsating combustion of condensed systems proposed in the article conveys the main 
aspects of the process qualitatively correctly and is in satisfactory quantitative agreement 
with the results of computer calculations. 

In conclusion, we note that other schemes of the relaxation oscillations in the combus- 
tion rate of smokeless powders have been analyzed in [Ii~ 12]. 

The authors are grateful to A. P. Aldushin, A. G. Merzhanov, B. I. Khaikin, and K~ G. 
Shkadinskii for helpful discussions and the presentation of detailed data on the numerical 
calculations, and to V~ I. Lisitsyn for assistance in the work. 
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